Thin-Walled Curved Beam Theory Based on Centroid-Shear Center Formulation

Kim Nam-II
Post-Doctoral Fellow, Department of Civil and Environmental Engineering, Sungkyunkwan Unversity, Cheoncheon-Dong, Jangan-Ku, Suwon 440-746, Korea
Kim Moon-Young*
Professor, Department of Civil and Environmental Engineering, Sungkyunkwan University, Cheoncheon-Dong, Jangan-Ku, Suwon 440-746, Korea

Abstract

To overcome the drawback of currently available curved beam theories having non-symmetric thin-walled cross sections, a curved beam theory based on centrond-shear center formulation is presented for the spatially coupled free vibration and elastic analysis For this, the displacement field is expressed by introducing displacement parameters defined at the centroid and shear center axes, respectively Next the elastic stram and kinetic energes considering the thicknesscurvature effect and the rotary inertia of curved beam are rigorously derived by degenerating the energies of the elastic contmuum to those of curved beam And then the equilibrium equations and the boundary conditions are consistently derived for curved beams having non-symmetric thin-walled cioss section It is emphasized that for curved beams with L - or T-shaped sections, this thin-walled curved beam theory can be easily leduced to the solld beam theory by smply putting the sectional propertres associated with warping to zero In order to illustrate the validity and the accuracy of this study, FE solutions using the Hermitian curved beam elements are presented and compared with the results by previous research and ABAQUS's shell elements

Key Words : Thin-Walled Curved Beam, Free Vibratıon Analysis, Elastıc Analysis, Warping

1. Introduction

Curved beam structures have been used in many mechanical, aerospace and civil engineering applications such as spring design, curved wires in missile-guidance floated gyroscopes, curved girder bridges, biake shoes within drum brakes, tire dynamics, stiffeners in aircraft structures, and turbomachmery blades It can also be used as a simplified model of a shell structure

In general, the vibrational and elastic behavior of thin-walled curved beam structures are very

[^0]complex because the axial, flexural and torsional deformations are coupled due to the curvature effects as well as non-symmetry of cross section. Investigation into the behavior of thin-walled curved members has been carried out extensively since the early researches (Vlasov, 1961, Timoshenko and Gere, 1961) and particularly monographs by Dabrowskı (1968), Hens (1975) and Gjelsvik (1981) are worth remarking as useful references for curved beam theory and 1ts applications

Up to the present, considerable researches (Lee, 2003, Raveendranath et al, 2000, Wilson and Lee, 1995, Gupta and Howson, 1994) on the free 1 -plane vibration of curved beam have been done considering the various parameters such as boundary conditions, shear deformation, rotary inertia, variable curvatures and variable cross sections. And the researches for the de-
coupled free out-of-plane vibration behavior of curved beam have been performed by several authors (Chucheepsakul and Saetiew, 2002, Piovan et al., 2000 , Cortnez and Piovan, 1999 , Howson and Jemah, 1999; Kawakami et al, 1995) Also Kang and Han (1998) presented the closed-form solution and a numerical solution for the decoupled out-of-plane static analysis of a curved beam with circular cross section subjected to torque by the differential quadrature method

It is well known that the thon-walled straight beam theory with non-symmetric cross section based on the centroid-shear center formulation is established, in which its axial, flexural and warping-torsional deformations are decoupled Hence the warpung-free theory for straight beam with non-symmetric thun-walled section is easily obtaned from the thin-walled beam theory by smply putting the warping moment of mertia to zero.

On the other hand, for the clastic and stability theories of curved beams based on the centroidshear center formulation, most of previous researches (Kang and Yoo, 1994, Yang and Kuo, 1987, 1986) have been restricted to those with doubly symmetric thun-walled cross sections Furthermore it has been reported by Gendy and Saleeb (1992) that the curved beam theory based on the centroid-shear center formulation is valid only for a cross section having doubly symmetry or one axis of symmetry which lies in the plane of beam curvature, otherwise, couplung terms still exist For this reason, it appears that most of thin-walled curved beam theories with non-symmetric cross sections have been developed based on displacement parameters which are all defined at the centroid axis (Kim et al., 2002, 2000a, b, Hu et al, 1999, Gendy and Saleeb, 1994, 1992, Saleeb and Gendy, 1991 ; Kım et al., 2002) presented analytical and numencal solutions on a spatial free vibration of thin-walled curved beam, as a separated curved structure, with non-symmetric section neglecting shear deformation effects and Gendy and Saleeb (1994) presented an effective formulation on spatial free vibration of arbitrary thin-walled curved beam by meluding the shear deformation and rotary inertia. However,
they partrally considered the effect of thicknesscurvature and shear deformation

It is important to note that these centroid formulations for the vibration and elastic analysis of thin-walled curved beam with L- or T-shaped cross sections have a drawback to evaluate the several sectional properties associated with warping additionally because the warping function of cross section at the centrold does not become zero To the best of my knowledge, Tong and Xu's study (2002) was only the recent attempt reported on the curved beam theory with nonsymmetric cross section based on the centrondshear center formulation in the hterature. However they did not consider the thickness-curvature effect which made the difference become larger in curved beam with large subtended angle and small radius and was restricted to only the elastic analysis of curved beam

The main purpose of this paper is to present a curved beam theory with non-symmetric cross section based on centroid-shear center formulation, in which the axial and flexural displacements are defined at the centrold and the lateral and warping-torsional displacements at the shear center, respectively Particularly for curved beams with L- or T-shaped sections, this thin-walled curved beam theory can be reduced easily to the theory neglecting the restramed warping torsion by sumply putting the sectional properties assoclated with warping defined at the shear center to zero Also for the curved beam with non-symmetric closed sections, this beam theory may be reduced naturally to that with neglecting warping deformation because the values of sectional properties assoclated with warping at the shear center become extremely large. The important points presented are summarized as follows
(1) The displacement field for non-symmetric thin-walled curved beams with constant curvature is introduced, in which the axial displacement and two flexural rotations are defined at the centroid and the torsional rotation including the normalized warping function and two lateral displacements are defined at the shear center, respectuvely
(2) Next force-deformation relations due to the normal stress considering the thickness-curvature effect are accurately derived at the general coordinates.
(3) And then the elastic strain and kinetic energies based on the centroid-shear center formulation are newly derived for the free vibration and elastic analysis of non-symmetric curved beams having thin-walled open and closed cross sections, respectively
(4) In addition, FE procedure using the Hermitian curved beam elements is presented for the analysis of non-symmetric curved beams. Finally to demonstrate the validity of the proposed study, numerical solutions are presented and compared with the results by available references and ABAQUS's shell elements.

2. Curved Beam Theory Based on the
 Centroid-Shear Center Formulation

To degenerate a spatially coupled free vibration and elastic theories for the continuum to those for the thin-walled curved beams, the following assumptions are adopted in this paper.
(1) The thin-walled curved beams are linearly elastic and prismatic.
(2) The cross section is rigid with respect to in-plane deformation except for warping defor mation.
(3) The axis of curvature does not necessarily coincide with one of the principal axes.

S: Shear center
O:Centroid
(a) Displacement parameters

2.1 Kinematics

In this study, two curvilinear coordinate systems are adopted to derive a general theory for free vibration and elastic analysis of thin-walled curved beams consistently. Fig. I shows the first coordinate system $\left(x_{1}, x_{2}, x_{3}\right)$, in which the x_{1} axis coincides with the curved centroid axis having the radius of curvature R but x_{2}, x_{3} axes are not necessarily principal inertia axes. While the second coordinate system ($x_{1}^{s}, x_{2}^{s}, x_{3}^{s}$) is constituted by the shear center axis and two orthogonal axes running parallel with the direction of x_{2}, x_{3} axes (see Fig. 2). Also x_{2}^{ρ} and x_{3}^{β} are principal inertia axes defined at the centroid. Then transformation equations between two coordinates systems may be expressed by

$$
\begin{gather*}
x_{1}=x_{1}^{s} \tag{1a}\\
x_{2}=x_{2}^{s}+e_{2}=x_{2}^{\beta} \cos \gamma-x_{3}^{\beta} \sin \gamma \tag{lb}\\
x_{3}=x_{3}^{s}+e_{3}=x_{2}^{p} \sin \gamma+x^{\beta} \cos \gamma \tag{1c}
\end{gather*}
$$

where $\left(e_{2}, e_{3}\right)$ denotes the position vector of the

Fig. 1 A curvilinear coordinate system for non -symmetric thin-walled curved beam

(b) Stress resultants

Fig. 2 Two coordinate systems, displacement parameters and stress resultants
shear center and γ is the angle between x_{2} and the $x B$ axis

To introduce the displacement field for the non-symmetric thin-walled cross section, seven displacement parameters and stress resultants are used as shown in Figs $2(a)$ and $2(b)$, respectively Assuming that the cross section is rigid with respect to in-plane deformation, the displacement field can be written as follows

$$
\begin{gather*}
U_{1}=U_{x}+x_{3} \omega_{2}-x_{2} \omega_{3}+f \phi\left(x_{2}, x_{3}\right) \tag{2a}\\
U_{2}=U_{y}-\theta\left(x_{3}-e_{3}\right) \tag{2b}\\
U_{3}=U_{z}+\theta\left(x_{2}-e_{2}\right) \tag{2c}
\end{gather*}
$$

where $U_{x}, \omega_{2}, \omega_{3}=$ the rigid body translation and two rotations with respect to x_{1}, x_{2}, x_{3} axes; θ, $U_{y}, U_{z}=$ the rigid body rotation and two translations with respect to $x_{1}^{s}, x_{2}^{s}, x_{3}^{s}$ axes, $f, \phi=$ the displacement parameter measuring warping deformation and the normalized warping function defined at the shear center, respectively For later use, sectional properties with respect to the cen-tro1d-shear center are defined as

$$
\begin{gathered}
I_{2}=\int_{A} x_{3}^{2} d A, I_{3}=\int_{A} x_{2}^{2} d A, I_{23}=\int_{A} x_{2} x_{3} d A \\
I_{\phi}=\int_{A} \dot{\phi}^{2} d A, I_{\phi 2}=\int_{A} \phi x_{3} d A, I_{\phi 3}=\int_{A} \phi x_{2} d A \\
I_{222}=\int_{A} x_{3}^{3} d A, I_{223}=\int_{A} x_{2} x_{3}^{2} d A, I_{233}=\int_{A} x_{2}^{2} x_{3} d A \\
I_{\phi 22}=\int_{A} \phi x_{3}^{2} d A, I_{\phi 23}=\int_{A} \phi x_{2} x_{3} d A, I_{\phi \phi 2}=\int_{A} \phi^{2} x_{3} d A
\end{gathered}
$$

where A, I_{2}, I_{3} and $I_{23}=$ the cross sectional area, the second moments of mertia and the product moment of mertia about x_{2} and x_{3} axes, respectively $I_{\phi}=$ the warping moment of inesta It should be noticed that $I_{\phi 2}, I_{\rho 3}$ are always equal to zero and $I_{2 z 2}, I_{223}, I_{233}, I_{\phi 22}, I_{\phi 23}, I_{\phi \phi 2}$ denote the sectional properties to consider the thicknesscurvature effect which makes the difference become larger in cuived beam with large subtended angle and small radus

2.2 Principle of virtual work

With the assumption of the rigid $1 n$-plane deformation, stress resultants with respect to the
centroid-shear center axes are defined as follows

$$
\begin{gather*}
F_{1}=\int_{A} \tau_{11} d A, F_{2}=\int_{A} \tau_{12} d x, F_{3}=\int_{A} \tau_{13} d A \\
M_{1}=\int_{A}\left[\tau_{13}\left(x_{2}-e_{2}\right)-\tau_{12}\left(x_{3}-e_{3}\right)\right] d A \\
M_{2}=\int_{A} \tau_{11} x_{3} d A, M_{3}=-\int_{A} \tau_{11} x_{2} d A, M_{p}=\int_{A} \tau_{11} \phi d A \tag{4a-h}\\
M_{R}=\int_{A}\left[\tau_{12} \phi_{2}+\tau_{13}\left(\phi_{3}-\frac{\phi}{R+x_{3}}\right)\right] \frac{R+x_{3}}{\bar{R}} d A
\end{gather*}
$$

where $F_{1}=$ the axial force acting at the centroid, F_{2} and $F_{3}=$ the shear forces acting at the shear center, $M_{1}=$ the total twisting moment with respect to the shear center axis, M_{2} and $M_{3}=$ the bending moments with respect to x_{2} and x_{3} axes, respectively M_{R} and $M_{\phi}=$ the restamed (nonunform) torsional moment and the bimoment about the shear center axis, respectively

The principle of virtual work for the general continuum vibrating harmonically is expressed as

$$
\begin{equation*}
\int_{V} \tau_{i} \delta e_{t} d V-\omega^{2} \int_{V} \rho U_{2} \delta U_{2} d V=\int_{S} T_{i} \delta U_{2} d S \tag{5}
\end{equation*}
$$

where $e_{23}=$ the conventional linear strain due to $U_{i}, \rho=$ the density,$\omega=$ the circular frequency, $T_{i}=$ the surface force The first term denotes the conventional internal virtual work giving the elastic strain energy and the second term represents the kinetic energy in case of the thin-walled crrcular beam, Eq (5) may be transformed to the principle of the total potential energy II as follows

$$
\begin{equation*}
\Pi==\Pi_{E}-\Pi_{M}-\Pi_{e x t} \tag{6}
\end{equation*}
$$

where the detatled expressions for each term of Π are

$$
\begin{gather*}
\Pi_{E}=\frac{1}{2} \int_{0}^{l} \int_{A}\left[\tau_{11} e_{11}+2 \tau_{12} e_{12}+2 \tau_{13} e_{13}\right] \frac{R+x_{3}}{R} d A d x_{1} \tag{7a}\\
\Pi_{M}=\frac{1}{2} \rho \omega^{2} \int_{0}^{1} \int_{A}\left[U_{1}^{2}+U_{2}^{2}+U_{3}^{2}\right] \frac{R+x_{3}}{R} d A d x_{1} \tag{7b}\\
\Pi_{e x t}=\frac{1}{2} U_{e}^{T} F_{e} \tag{7c}
\end{gather*}
$$

where $\mathbf{U}_{\mathrm{e}}, \mathbf{F}_{e}=$ the nodal displacement and nodal force vectors, respectively

On the other hand, stram-displacement relatuons due to the fiist order displacements are expressed as follows

$$
\begin{align*}
e_{11}= & \left(U_{1,1}+\frac{U_{3}}{R}\right) \frac{R}{R+x_{3}} \\
= & {\left[\left(U_{r}^{\prime}+\frac{U_{z}}{R}-\frac{e_{2}}{R} \theta\right)\right.} \tag{8a}\\
& \left.\cdots x_{2}\left(\frac{\theta}{R}+\omega_{3}^{\prime}\right)+x_{3} \omega_{2}^{\prime}+\phi f^{\prime}\right] \frac{R}{R+x_{3}} \\
2 e_{12}= & \frac{U_{2,1} R}{R+x_{3}}+U_{1,2} \tag{8b}\\
= & {\left[U_{y}^{\prime}-\theta^{\prime}\left(x_{3}-e_{3}\right)\right] \frac{R}{R+x_{3}}-\omega_{3}+f \phi_{12} } \\
2 e_{13}= & \left(U_{3,1}-\frac{U_{1}}{R}\right) \frac{R}{R+x_{3}}+U_{1,3} \\
= & {\left[\frac{U_{x}}{R}+U_{z}^{\prime}+\theta^{\prime}\left(x_{2}-e_{2}\right)-\frac{x_{3}}{R} \omega_{2}\right.} \tag{8c}\\
& \left.+\frac{x_{2}}{R} \omega_{3}-\frac{f}{R} \phi\right] \frac{R}{R+x_{3}}+\omega_{2}+f \phi_{, 3}
\end{align*}
$$

For thin walled crrcular beams subjected to distributed loadings, by substituting linear strains (8a-c) into Eq (7a) and mtegrating over the cross sectional area, Eq (7a) is reduced to the following equations

$$
\begin{align*}
\Pi_{L}= & \frac{1}{2} \int_{Q}^{l}\left[F_{1}\left(U_{x}^{z}+\frac{U_{2}}{R}-\frac{e_{2}}{R} \theta\right)+M_{2} \omega_{2}^{\prime}+M_{3}\left(-\frac{\theta}{R}+\omega_{3}^{\prime}\right)+M_{0} f^{\prime}\right. \\
& +F_{2}\left(U_{y}^{\prime}-\omega_{3}-\frac{e_{3}}{R} \omega_{2}+\frac{e_{3}^{2}}{R} f\right) \tag{9}\\
& +F_{3}\left(-\frac{U_{x}}{R}+U_{z}^{\prime}+\omega_{2}+\frac{e_{2}}{R} \omega_{3}-\frac{e_{2} e_{3}}{R} f\right) \\
& \left.+\left(M_{1}-M_{R}\right)\left(\theta^{\prime}+\frac{\theta_{3}}{R}-\frac{e_{3}}{R} f\right)+M_{R}\left(\theta^{\prime}+\frac{\omega_{3}}{R}+j-\frac{e_{3}}{R} f\right)\right] d z_{1}
\end{align*}
$$

And Eq (7c) can be expressed as

$$
\begin{align*}
\Pi_{\text {ext }}= & \int_{o}^{l}\left[p_{1} U_{x}+p_{2} U_{y}+p_{3} U_{z}\right. \tag{10}\\
& \left.+m_{1} \omega_{1}+m_{2} \omega_{2}+m_{3} \omega_{3}+m_{\phi} f\right] d x_{1}
\end{align*}
$$

where p_{1}, p_{2}, p_{3} are the distributed forces in the direction of x_{1}, x_{2}, x_{3} axes and $m_{1}, m_{2}, m_{3}, m_{\phi}$ denote distributed moments

Now by invoking the stationary condition of the total potential energy, equilibrium equations and boundary conditions are obtained as

$$
\begin{equation*}
F_{\mathrm{I}}^{\prime}+\frac{F_{3}}{R}=-p_{1} \tag{11a}
\end{equation*}
$$

$$
\begin{gather*}
F_{2}^{\prime}=-p_{2} \tag{11b}\\
-\frac{F_{1}}{R}+F_{3}^{\prime}=-p_{3} \tag{11c}\\
\frac{e_{2}}{R} F_{1}+M_{1}^{\prime}+\frac{M_{3}}{R}=-m_{1} \tag{11d}\\
-F_{3}+M_{2}^{\prime}=-m_{2} \tag{11e}\\
F_{2}+\frac{e_{3}}{R} F_{2}-\frac{e_{2}}{R} F_{3}-\frac{M_{1}}{R}+M_{3}^{\prime}=-m_{3} \tag{11f}\\
-\frac{e_{3}^{2}}{R} F_{2}+\frac{e_{2} e_{3}}{R} F_{3}+\frac{e_{3}}{R} M_{1}-\frac{e_{3}}{R} M_{R} \tag{11g}\\
-M_{R}+M_{\phi}^{\prime}=-m_{\phi}
\end{gather*}
$$

and

$$
\begin{gather*}
\delta U_{x}(o)=\delta U_{x}^{p} \text { or } F_{1}(o)=-F^{p} \tag{12a}\\
\delta U_{x}(l)=\delta U_{x}^{q} \text { or } F_{1}(l)=F_{1}^{q} \tag{12b}\\
\delta U_{y}(o)=\delta U_{y}^{p} \text { or } F_{2}(o)=-F_{2}^{p} \tag{12c}\\
\delta U_{y}(l)=\delta U_{y}^{q} \text { or } F_{2}(l)=F_{2}^{q} \tag{12d}\\
\delta U_{z}(o)=\delta U_{z}^{p} \text { or } F_{3}(o)=-F_{3}^{p} \tag{12e}\\
\delta U_{z}(l)=\delta U_{2}^{q} \text { or } F_{3}(l)=F_{3}^{q} \tag{12f}\\
\delta \theta(o)=\delta \theta^{\rho} \text { or } M_{1}(o)=-M_{1}^{p} \tag{12~g}\\
\delta \theta(l)=\delta \theta^{q} \text { or } M_{1}(l)=M_{1}^{q} \tag{12h}\\
\delta \omega_{2}(o)=\delta \omega_{2}^{p} \text { or } M_{2}(o)=-M_{2}^{p} \tag{121}\\
\delta \omega_{2}(l)=\delta \omega_{2}^{q} \text { or } M_{2}(l)=M_{2}^{q} \tag{12j}\\
\delta \omega_{3}(o)=\delta \omega_{3}^{p} \text { or } M_{3}(o)=-M_{3}^{p} \tag{12k}\\
\delta \omega_{3}(l)=\delta \omega_{3}^{q} \text { or } M_{3}(l)=M_{3}^{q} \tag{121}
\end{gather*}
$$

2.3 Elastic strain and kinetic energies of thin-walled curved beam

Now force-deformation relations due to the normal stress are derived In this study, the sheat deformation effects due to both the shear forces and the restrained waping torsion are neglected Therefore, the shear rigidity constraints in Eq (9) are as follows

$$
\begin{equation*}
U_{y}^{\prime}-\omega_{3}-\frac{e_{3}}{R} \omega_{3}+\frac{e_{3}^{2}}{R} f=0 \tag{13a}
\end{equation*}
$$

$$
\begin{gather*}
-\frac{U_{x}}{R}+U_{z}^{\prime}+\omega_{2}+\frac{e_{2}}{R} \omega_{3}-\frac{e_{2} e_{3}}{R} f=0 \tag{13b}\\
\theta^{\prime}+\frac{\omega_{3}}{R}+f-\frac{e_{3}}{R} f=0 \tag{13c}
\end{gather*}
$$

Form Eq ($13 \mathrm{a}-\mathrm{c}$), the rotational displacements ω_{2}, ω_{3}, and the warping parameter f may be rewritten with respect to $U_{x}, U_{y}, U_{z}, \theta$ as follows

$$
\begin{gather*}
\omega_{2}=\frac{U_{x}}{R}-\frac{e_{2}}{R} U_{y}^{\prime}-U_{z}^{\prime}-\frac{e_{2} e_{3}}{R} \theta^{\prime} \tag{14a}\\
\omega_{3}=\frac{R-e_{3}}{R} U_{y}^{\prime}-\frac{e_{3}^{2}}{R} \theta^{\prime} \tag{14b}\\
f=-\frac{U_{y}^{\prime}}{R}-\frac{R+e_{3}}{R} \theta^{\prime} \tag{14c}
\end{gather*}
$$

Accordingly we can rewrite the displacement field U_{1} in Eq (2a) using Eqs ($14 \mathrm{a}-\mathrm{c}$)

$$
\begin{align*}
U_{1}= & U_{x}-x_{2}\left\{\left(1-\frac{e_{3}}{R}\right) U_{y}^{\prime}-\frac{e_{3}^{2}}{R} \theta^{\prime}\right\} \\
& -x_{3}\left\{-\frac{U_{x}}{R}+\frac{e_{2}}{R} U_{y}^{\prime}+U_{z}^{\prime}+\frac{e_{2} e_{3}}{R} \theta^{\prime}\right\} \tag{15}\\
& -\left\{\frac{U_{y}^{\prime}}{R}+\left(1+\frac{e_{3}}{R}\right) \theta^{\prime}\right\} \phi
\end{align*}
$$

Also the normal strann e_{11} can be obtamed by substituting Eqs. (14a-c) into Eq (8 a) And then by substituting Eq. (8a) into Eqs (4a), (4e), (4 f$),(4 \mathrm{~g})$ and integrating over the cross section, the following force-deformation relations due to the normal stress are obtaned

$$
\left\{\begin{array}{l}
\left\{\begin{array}{l}
F_{1} \\
M_{2} \\
M_{3} \\
M_{\varphi}
\end{array}\right\}=
\end{array}=\left[\begin{array}{cccc}
A+\frac{\hat{I}_{2}}{R^{2}} & -\frac{\hat{I}_{2}}{R} & \frac{\hat{I}_{23}}{R} & \frac{I_{\phi 22}}{R^{2}} \\
-\frac{\hat{I}_{2}}{R} & \hat{I}_{2} & -\hat{I}_{23} & -\frac{I_{\phi 22}}{R} \\
\frac{\hat{I}_{23}}{R} & -\hat{I}_{23} & \hat{I}_{3} & \frac{I_{\phi 23}}{R} \\
\frac{I_{\phi 22}}{R^{2}} & -\frac{I_{q 22}}{R} & \frac{I_{q 23}}{R} & \hat{I}_{\phi}
\end{array}\right], \begin{array}{c}
U_{x}^{\prime}+\frac{U_{x}}{R}-\frac{e_{2}}{R} \theta \\
\frac{U_{x}^{\prime}}{R}-\frac{e_{2}}{R} U_{y}^{\prime \prime}-U_{z}^{\prime \prime}-e_{2} e_{3} \\
\frac{R-\theta_{3}^{\prime \prime}}{R} U_{y}^{\prime \prime}-\frac{e_{3}^{2}}{R} \theta^{\prime \prime}-\frac{\theta}{R} \\
-\frac{U_{y}^{\prime \prime}}{R}-\frac{R+e_{3}}{R} \theta^{\prime \prime}
\end{array}\right\}
$$

where $E=$ the Young's modulus and

$$
\begin{gather*}
\hat{I}_{2}=I_{2}-\frac{I_{222}}{R}, \hat{I}_{3}=I_{3}-\frac{I_{233}}{R} \tag{17a,b}\\
\hat{I}_{23}=I_{23}-\frac{I_{223}}{R}, \hat{I}_{\phi}=I_{\phi}-\frac{I_{\phi \phi 2}}{R} \tag{17c,d}
\end{gather*}
$$

And the St Venant torstonal moment is expressed as

$$
\begin{equation*}
M_{s t}=G J\left(\frac{U_{y}^{\prime}}{R}+\frac{R+e_{3}}{R} \theta^{\prime}\right) \tag{18}
\end{equation*}
$$

where $G=$ the shear modulus and $J=$ the torsional constant In evaluating Eqs ($16 \mathrm{a}-\mathrm{d}$), $I_{\phi 2}$ and $I_{\phi s}$ vanısh and the following approximation is used

$$
\begin{equation*}
\frac{R}{R+x_{3}} \cong 1-\frac{x_{3}}{R}+\left(\frac{x_{3}}{R}\right)^{2} \tag{19}
\end{equation*}
$$

Consequently substitution of force-deformation relatons ($16 \mathrm{a}-\mathrm{d}$) and (18) into Eq (9) leads to the elastic stram energy of the thin-walled curved beam with non-symmetric cross section.

$$
\begin{align*}
& \Pi_{\varepsilon}=\frac{1}{2} \int\left[E A\left(U_{x}^{\prime}+\frac{U_{2}}{R}-\frac{Q_{2}}{R} \theta\right)^{2}\right. \\
& +E \hat{L}_{2}\left(\frac{e_{2}}{R} U_{3}^{\prime \prime}+U_{2}^{\prime \prime}+\frac{U_{2}}{R^{2}}+\frac{\theta_{2} e_{3}}{R} \theta^{\prime \prime}-\frac{e_{2}}{R^{2}} \theta\right)^{2} \\
& +E \hat{h_{3}}\left(\frac{R-e_{3}}{R} U_{s}^{u}-\frac{e_{s}^{2}}{R} \theta^{\prime \prime}-\frac{\theta}{R}\right)^{2} \\
& +E f_{0}\left(\frac{U_{y}^{\prime}}{R}+\frac{R+e_{3}}{R} \theta^{u}\right)^{2}+G\left(\frac{U_{y}^{\prime}}{R}+\frac{R+e_{3}}{R} \theta\right)^{2} \tag{20}\\
& +2 E \hat{I}_{x}\left(\frac{e_{2}}{R} U_{3}^{U_{3}}+U_{2}^{\prime \prime}+\frac{U_{x}}{R^{2}}+\frac{\theta_{2} e_{3}}{R} \theta^{4}-\frac{e_{2}}{R^{2}} \theta\right)\left(\frac{R-e_{3}}{R} U_{3}^{u}-\frac{\theta_{3}^{2}}{R} \theta^{r}-\frac{\theta}{R}\right) \\
& -2 \frac{E l_{p 2} 2}{R}\left(\frac{U_{y}^{\prime \prime}}{R}+\frac{R+e_{3}}{R} \theta^{\prime \prime}\right)\left(\frac{e_{2}}{R} U_{y}^{\prime \prime}+\frac{U_{2}}{R^{2}}+U U_{2}^{\prime \prime}+\frac{e_{2} e_{3}}{R} \theta^{\prime \prime}-\frac{e_{2}}{R^{2}} \theta\right) \\
& \left.-2 \frac{E I_{43}}{R}\left(\frac{U_{3}^{u}}{R}+\frac{R+e_{3}}{R} \theta^{4}\right)\left(\frac{R-e_{3}}{R} U_{y}^{u}-\frac{-e_{3}^{2}}{R} \theta^{4}-\frac{\theta}{R}\right)\right] d x_{1}
\end{align*}
$$

Now by eliminating F_{2}, F_{3}, M_{R} from Eqs (1lag), equilibrium equations of curved beams become

$$
\begin{align*}
& F_{1}^{\prime}+\frac{M_{2}^{\prime}}{R}=-p_{1}-\frac{m_{2}}{R} \tag{21a}\\
- & \frac{M_{1}^{\prime}}{R}-\frac{e_{2}}{R} M_{2}^{\prime \prime}+M_{3}^{\prime \prime} \tag{21b}\\
= & \frac{R+e_{3}}{R} p_{2}+\frac{e_{2}}{R} m_{2}^{\prime}-m_{3}^{\prime} \\
& -\frac{F_{1}}{R}+M_{2}^{\prime \prime}=-p_{3}-m_{2}^{\prime} \tag{21c}
\end{align*}
$$

$$
\begin{align*}
& \frac{e_{2}}{R} F_{1}+\frac{e_{2} e_{3}}{R} M_{2}^{\prime \prime}+\frac{M_{3}}{R}+\frac{R+e_{3}}{R} M_{s t}^{\prime}+M_{\phi}^{\prime \prime} \\
& =-\frac{e_{3}^{2}}{R} p_{2}-m_{1}-\frac{e_{2} e_{3}}{R} m_{2}^{\prime}-m_{\phi}^{\prime} \tag{21d}
\end{align*}
$$

And subsititution of Eqs (16a-d) and (18) into Eqs (21a-d) results in

$$
\begin{align*}
& E A\left(U_{x}^{\prime \prime}+\frac{U_{z}^{\prime}}{R}-\frac{e_{2}}{R} \theta^{\prime}\right)=-p_{1}-\frac{m_{2}}{R} \tag{22a}\\
& \frac{e_{2}}{R} E \hat{I}_{2}\left(\frac{e_{2}}{R} U_{y}^{\prime \prime \prime}+U_{z}^{\prime \prime \prime \prime}+\frac{U_{z}^{\prime \prime}}{R^{2}}+\frac{e_{2} e_{3}}{R} \theta^{\prime \prime \prime \prime}-\frac{e_{2}}{R^{2}} \theta^{\prime \prime}\right) \\
& +E \hat{I}_{3}\left(\frac{R-e_{3}}{R} U_{\psi}^{\prime \prime \prime \prime}-\frac{e_{3}^{z}}{R} \theta^{\prime \prime \prime \prime}-\frac{\theta^{\prime \prime}}{R}\right) \\
& +E \hat{I}_{23}\left(\frac{e_{2}\left(2 R-e_{3}\right)}{R^{2}} U_{y}^{w \prime}+U_{z}^{m \prime}+\frac{U_{z}^{\prime \prime}}{R^{2}}\right. \\
& \left.+\frac{e_{2} e_{3}\left(R-e_{3}\right)}{R^{2}} \theta^{m \prime}-\frac{2 e_{2}}{R^{2}} \theta^{\prime \prime}\right) \tag{22b}\\
& -\frac{G I}{R}\left(\frac{U_{y}^{\prime \prime}}{R}+\frac{R+e_{3}}{R} \theta^{\prime \prime}\right) \\
& +\frac{E \hat{I}_{4}}{R}\left(\frac{U_{3}^{\prime \prime}}{R}+\frac{R+e_{3}}{R} \theta^{\prime \prime}\right) \\
& =\frac{R+e_{3}}{R} f_{2}+\frac{e_{2}}{R} m_{2}^{\prime}-m_{3}^{\prime}
\end{align*}
$$

$$
E \hat{I}_{2}\left\{-\frac{e_{2}}{R} U_{y}^{m \prime \prime}-\frac{e_{2}}{R^{3}} U_{y}^{\prime \prime}-U_{z}^{m \prime \prime}-2 \frac{U_{z}^{\prime \prime}}{R^{2}}-\frac{U_{z}}{R^{4}}\right.
$$

$$
\begin{equation*}
\left.-\frac{e_{2} e_{3}}{R} \theta^{m \prime \prime}+\frac{e_{2}}{R^{2}}\left\{1-\frac{e_{3}}{R}\right) \theta^{\prime \prime}+\frac{e_{2}}{R^{4}} \theta\right\} \tag{22c}
\end{equation*}
$$

$$
-E \hat{I}_{z s}\left(\frac{R-e_{3}}{R} U_{y}^{m \prime \prime}-\frac{R-e_{3}}{R^{3}} U_{y}^{\prime \prime}+\frac{e_{3}^{2}}{R} \theta^{\prime \prime \prime}+\frac{\theta^{\prime \prime}}{R}+\frac{\theta}{R^{3}}\right)
$$

$$
-\frac{E A}{R}\left(U_{x}^{\prime}+\frac{U_{z}}{R}-\frac{e_{z}}{R} \theta\right)=-p_{3}-w_{2}^{\prime}
$$

$$
\frac{e_{2}}{R} E A\left(U_{x}^{\prime}+\frac{U_{2}}{R}-\frac{e_{2}}{R} \theta\right)+\frac{e_{2}}{R^{2}} E \hat{1}_{2}\left(-e_{2} e_{3} U_{y}^{m \prime \prime}-\frac{e_{2}}{R} U_{y}^{\prime \prime}\right.
$$

$$
\left.-R e_{3} U_{2}^{\prime \prime \prime}+\frac{R-e_{3}}{R} U_{2}^{\prime \prime}+\frac{U_{z}}{R^{2}}-e_{2} e_{3}^{2} \theta^{\prime \prime \prime}+\frac{2 e_{2} e_{3}}{R} \theta^{\prime \prime}-\frac{e_{2}}{R^{2}} \theta\right)
$$

$$
+E \hat{I}_{3}\left(\frac{R-e_{3}}{R^{2}} U_{y}^{\prime \prime}-\frac{e_{3}}{R^{2}} \theta^{\prime \prime}-\frac{\theta}{R^{2}}\right)
$$

$$
\begin{equation*}
+E \hat{I}_{23}\left\{-\frac{e_{2} e_{3}\left(R-e_{3}\right)}{R^{2}} U_{y}^{w \prime \prime \prime}+\frac{e_{2}\left(2 R-e_{3}\right)}{R^{3}}-U_{y}^{\prime \prime}\right. \tag{22d}
\end{equation*}
$$

$$
\left.+\frac{U_{2}^{\prime \prime}}{R}+\frac{U_{z}}{R^{3}}+\frac{e_{2} e_{3}^{3}}{R^{2}} \theta^{m \prime \prime}+\frac{e_{2} e_{3}}{R}\left(2-\frac{e_{3}}{R}\right) \theta^{\prime \prime}-\frac{2 e_{2}}{R^{3}} \theta\right\}
$$

$$
+G J\left\{\frac{R+e_{3}}{R^{2}} U_{y}^{\prime \prime}+\frac{\left(R+e_{3}\right)^{2}}{R^{2}} g^{\prime \prime}\right\}
$$

$$
-E \hat{I}_{p}\left(\frac{U_{3}^{m \prime}}{R}+\frac{R+e_{3}}{R} \theta^{\prime \prime \prime}\right)=-\frac{e_{3}^{2}}{R} p_{2}-m_{1}-\frac{e_{2} e_{3}}{R} m_{2}^{\prime}-m_{\phi}^{\prime}
$$ cross sections, the sectional properties (1e., \hat{I}_{ϕ}, $I_{\phi 22}, I_{\phi 23}, \widetilde{I}_{\phi}$) in Eqs. (20) and (23) associated with warping become zero obviously Also for curved beams with non-symmetric closed sections, these properties have the extremely large values so that those can be interpreted as penalty numbers in the strain energy of curved beams Resultantly this means that strain and kinetic energy terms related to warping should vanısh in the centroid-shear center formulation for the curved beams with L - or T-shaped cross sections or closed sections

Based on these reasons, for the spatially coupled vibration and elastic analysis of curved beams with thin-walled open cross sections having the warping function vanshing at the shear center or with thin-walled closed cross sections, the elastic strain and kinetic energy expression can be easily simplified to Eqs (25) and (26), respectively

$$
\begin{align*}
& \Pi_{E}^{*}=\frac{1}{2} \int_{0}^{i}\left[E A\left(U_{x}^{\prime}+\frac{U_{z}}{R}-\frac{e_{2}}{R} \theta\right)^{2}\right. \\
& +R \Gamma_{2}\left(\frac{e_{2}}{R} U_{3}^{j}+\frac{U_{2}}{R^{2}}+U_{z}^{z}+\frac{e_{2} e_{3}}{R} \theta^{\prime \prime}-\frac{e_{2}}{R^{2}} \theta\right)^{2} \\
& +E \hat{I}_{3}\left(\frac{R-e_{3}}{R} U_{y}^{x}-\frac{e_{3}^{2}}{R} \theta^{\prime \prime}-\frac{\hat{\theta}}{R}\right)^{2}+G J\left(\frac{U_{3}^{\prime}}{R}+\frac{R+e_{3}}{R} \theta^{\prime}\right)^{2} \tag{25}\\
& +2 E I_{x}\left(\frac{\epsilon_{2}}{R} U_{y}^{w}+U_{2}^{j}+\frac{U_{2}}{R^{2}}+\frac{e_{2} g_{3}}{R} \theta^{n}-\frac{\theta_{2}}{R^{2}} \theta\right) \\
& \left.\left(\frac{R-e_{3}}{R} U_{y}^{\prime \prime} \frac{e_{3}^{2}}{R} \theta^{\prime \prime}-\frac{\theta}{R}\right)\right] d x_{1}
\end{align*}
$$

and

$$
\begin{align*}
& \prod_{M}^{*}=\frac{1}{2} \rho_{i j}^{2} \int_{: 0}^{i}\left[A_{1} U_{x}^{2}+U_{y}^{2}+U_{3}^{2}+\theta^{2}\left(e_{2}^{2}+e_{3}^{2}\right)+2 A\left(e_{3} U_{y}-e_{2} U_{2}\right)\right\} \\
& +\tilde{I}_{3}\left(\frac{R-e_{3}}{R} U_{y}^{\prime}-\frac{e_{3}^{2}}{R} \theta^{\prime}\right)^{2}+\tilde{I}_{2}\left(U_{x}^{\prime}-\frac{U_{x}}{R}+\frac{e_{2}}{R} U_{y}^{\prime}+\frac{e_{2} e_{3}}{R} \theta^{\prime}\right)^{2} \\
& -2 \frac{I_{2}}{R} U_{x}\left(\frac{R-e_{3}}{R} U_{y}^{\prime}-\frac{e_{3}^{2}}{R} \theta^{\prime}\right)+2 \frac{\theta}{R}\left(I_{23} U_{z}-I_{2} U_{y}\right) \\
& -2 \frac{I_{2}}{R} U_{x}\left(U_{z}^{\prime}-\frac{U_{x}}{R}+\frac{e_{2}}{R} U_{y}^{\prime}+\frac{e_{2} e_{3}}{R} \theta^{\prime}\right) \tag{26}\\
& +2 \tilde{I}_{2}\left(\frac{R-a_{3}}{R} U_{y}^{\prime \prime}-\frac{e_{3}^{2}}{R} \theta^{\prime}\right)\left(U_{x}-\frac{U_{x}}{R}+\frac{e_{2}}{R} U_{3}+\frac{e_{2} e_{3}}{R} \theta^{\prime}\right) \\
& \left.+\left(I_{0}-2 \frac{I_{2} e_{3}}{R}-2 \frac{I_{2} e_{2}}{R}\right) \theta^{2}\right] d x_{1}
\end{align*}
$$

On the other hand, Kim et al (2002) used following elastic strain and kinetic energies for the spatially coupled free vibration analysis of curved beam with non-symmetric cross section inctuding the L - or T-shaped sections based on the centrod formulation in which the seven displacement parameters are defmed at the centroid

$$
\begin{aligned}
& \Pi_{\varepsilon}^{c}=\frac{1}{2} \int_{0}^{i}\left[E A\left(U_{x}^{c^{c}}+\frac{U_{z}^{c}}{R}\right)^{2}+E \hat{I}_{2}\left(U_{z}^{c^{\prime}}+\frac{U_{2}^{c}}{R^{2}}\right)^{2}\right. \\
& +E \hat{I}_{3}\left(U_{y}^{c}-\frac{\theta^{c}}{R}\right)^{2}+G I\left(\frac{U_{y}^{c}}{R}+\theta^{c}\right)^{2} \\
& +2 E \hat{I}_{23}\left(U_{z}^{c^{c}}+\frac{U_{z}^{c}}{R^{2}}\right)\left(U_{y}^{c}-\frac{\theta^{c}}{R}\right)+E \hat{I_{\phi}}\left(\frac{U_{y}^{c^{c}}}{R}+\theta^{c}\right)^{2} \\
& +2 E \hat{H}_{i 2}^{c}\left(U_{2}^{c}+\frac{U_{Z}^{c}}{R^{2}}\right)\left(\frac{U_{3}^{c}}{R}+\theta^{c}\right) \\
& \left.+2 E \hat{I}_{\beta}^{c}\left(U_{y}^{c}-\frac{\partial^{c}}{R}\right)\left(\frac{U_{j}^{c}}{R}+\theta^{c^{c}}\right)\right] d x_{1}
\end{aligned}
$$

where
$\hat{I}_{\phi}^{c}=I_{\phi}^{c}-\frac{I_{\phi \psi 2}^{c}}{R}, \hat{I}_{\phi 2}^{c}=I_{\phi 2}^{c}-\frac{I_{\phi 22}^{c}}{R}, \hat{I}_{\phi 3}^{c}=I_{\phi \xi}^{c}-\frac{I_{\phi 22}^{c}}{R}(28 \mathrm{a}-\mathrm{c})$
and

$$
\begin{align*}
\prod_{M}^{c}= & \frac{1}{2} \rho \omega^{2} \int_{0}^{l}\left[A\left(U_{x}^{c^{2}}+U_{y}^{c^{2}}+U_{z}^{c}\right)+\tilde{I}_{z}\left(U_{z}^{c}-\frac{U_{x}}{R}\right)^{2}\right. \\
& -2 \frac{I_{2}}{R}\left\{U_{y}^{c} \theta^{c}+U_{x}\left(U_{z}^{c}-\frac{U_{x}}{R}\right)\right\} \\
& +\tilde{I}_{3} U_{y}^{c}+2 I_{z 3}\left(U_{y}^{c} U_{z}^{c}-\frac{2}{R} U_{x} U_{y}^{c}+\frac{1}{R} U_{z}^{c} \theta^{c}\right) \\
& +2 \frac{I_{2 z}}{R} U_{y}^{c}\left(U_{z}^{c}-\frac{U_{x}}{R}\right)^{2}+\tilde{I}_{o} \theta^{c^{2}} \tag{29}\\
& +\tilde{I}_{\phi}^{c}\left(\frac{U_{y}^{c}}{R}+\theta^{c}\right)^{2}+2 \tilde{I}_{\phi 2}^{c}\left(U_{z}^{c}-\frac{U_{x}}{R}\right)\left(\frac{U_{y}^{c}}{R}+\theta^{c}\right) \\
& \left.-2 \frac{I_{\phi 2}^{c}}{R} U_{x}\left(\frac{U_{y}^{c}}{R}+\theta^{c}\right)+2 \tilde{I}_{\phi 3}^{c} U_{y}^{c}\left(\frac{U_{y}^{c}}{R}+\theta^{c}\right)\right] d x_{1}
\end{align*}
$$

where

$$
\tilde{I}_{\phi}^{c}=I_{\phi}^{c}+\frac{I_{\phi 22}^{c}}{R}, \tilde{I}_{\phi 2}^{c}=I_{\phi 2}^{c}+\frac{I_{\phi 22}^{c}}{R}, \tilde{I}_{\phi 3}^{c}=I_{\phi 3}^{c}+\frac{I_{\phi 23}^{c}}{R}(30 \mathrm{a}-\mathrm{c})
$$

The transformation equations between the sectional propertues associated with warping which are defined at the centroid and those at the shear center can be obtaned For this, the kinematical relationshıp between ϕ^{c} and ϕ defined at the centrond and the shear center, respectively, can be expressed as

$$
\begin{equation*}
\phi^{c}=\phi+e_{2} x_{3}-e_{3} x_{2} \tag{31}
\end{equation*}
$$

Then the transformation equations may be expressed as follows

$$
\begin{align*}
I_{\phi}^{c} & =\int_{A} \phi^{e 2} d A=\int_{A}\left(\phi+e_{2} x_{3}-e_{3} x_{2}\right)^{2} d A \tag{32a}\\
& =I_{\phi}+e_{2}^{2} I_{2}+e_{3}^{2} I_{3}-2 e_{2} e_{3} I_{23} \\
I_{\phi 2}^{c}= & \int_{A} \phi^{c} x_{3} d A=\int_{A}\left(\phi+e_{2} x_{3}-e_{3} x_{2}\right) x_{3} d A \tag{32b}\\
= & e_{2} I_{2}-e_{3} I_{23} \tag{32c}\\
I_{\phi 3}^{c}= & \int_{A} \phi^{c} x_{2} d A=\int_{A}\left(\phi+e_{2} x_{3}-e_{3} x_{2}\right) x_{2} d A \\
= & -e_{3} I_{3}+e_{2} I_{23} \tag{32d}\\
I_{\phi 23}^{c}= & \int_{A} \phi^{c} x_{2} x_{3} d A=\int_{A}\left(\phi+e_{2} x_{3}-e_{3} x_{2}\right) x_{2} x_{3} d A \\
= & I_{\phi 23}+e_{2} I_{223}-e_{3} I_{233} \tag{32e}\\
I_{\phi 22}^{c}= & \int_{A} \phi^{c} x_{3}^{2} d A=\int_{A}\left(\phi+e_{2} x_{3}-e_{3} x_{2}\right) x_{3}^{2} d A \\
= & I_{\phi 22}+e_{2} I_{222}-e_{3} I_{223} \\
I_{\phi \phi 2}^{c}= & \int_{A} \phi^{c 2} x_{3} d A=\int_{A}\left(\phi+e_{2} x_{3}-e_{3} x_{2}\right)^{2} x_{3} d A \tag{32f}\\
= & I_{\phi \phi_{2}+}+e_{2}^{2} I_{222}+e_{3}^{2} I_{233}+2 e_{2} I_{\phi 22} \\
& -2 e_{3} I_{\phi 23}-2 e_{2} e_{3} I_{23}
\end{align*}
$$

Here it should be noticed that when Eq. (25) compares with Eqs. (27) and (26) with Eq. (29), one can find a drawback in the previous formulation (Kim et al., 2002), namely the elastic strain and kinetic energies from the centroid formulation should retain the several sectional properties related to the warping function which does not become zero at the centroid.

3. Finite Element Formulation

The Hermitian curved beam element having arbitrary thin-walled cross sections is used based on the elastic strain and kinetic energy expressions derived in the previous Section. Fig. 3 shows the nodal displacement vector of thinwalled Hermitian curved beam element including restrained warping effect. This curved beam element has two nodes and eight degrees of freedom per node. As a result, the element displacement parameters $U_{x}, U_{y}, U_{x}, \theta$ can be interpolated with respect to the nodal displacements, which the detailed expression is presented in Kim et al. (2002). By substituting the interpolating functions, material and cross-sectional properties into Eqs. (20), (23) and (10) and integrating along the element length, equations of motion of thinwalled curved beam element are obtained in matrix form as

$$
\begin{equation*}
\left(\mathbf{K}_{e}-\omega^{2} \mathbf{M}_{\mathrm{e}}\right) \mathrm{U}_{\mathrm{e}}=\mathbf{F}_{\mathrm{e}} \tag{33}
\end{equation*}
$$

where

$$
\begin{gather*}
\mathrm{U}_{\mathrm{e}}=\binom{u^{p}, v^{p}, w^{p}, \omega_{1}^{p}, \omega_{2}^{p}, \omega_{3}^{p}, f^{p}, g^{p}}{u^{q}, v^{q}, w^{q}, \omega_{1}^{q}, \omega_{2}^{q}, \omega_{3}^{q}, f^{q}, g^{q}} \text { (34a) } \tag{34a}\\
\mathrm{F}_{\mathrm{e}}=\left\langle\begin{array}{l}
F_{1}^{p}, F_{2}^{p}, F_{3}^{p}, M_{1}^{p}, M_{2}^{p}, M_{3}^{p}, M_{b}^{p}, F_{m}^{p} \\
F_{1}^{q}, F_{2}^{q}, F_{3}^{q}, M_{1}^{q}, M_{2}^{q}, M_{3}^{q}, M_{b}^{q}, F_{n}^{q}
\end{array}\right\rangle(34 \mathrm{~b}) \\
\omega_{3}^{\prime \prime}
\end{gather*}
$$

Fig. 3 Nodal displacement vector of Hermitian curved beam element

In the above equation, \mathbf{K}_{c} is the 1616 element elastic stiffness matrix in local coordinate. In this study, stiffness matrices are evaluated using a Gauss numerical integration schemc. For Eq. (34a), it is convenient to transform the rotational and axial nodal displacement components into the nodal components including curvature effect as following

$$
\begin{align*}
& \tilde{\omega}_{z}=-U_{z}^{\prime}(o)+\frac{U_{x}(o)}{R}=\omega_{2}^{p}+\frac{u^{p}}{R} \tag{35a}\\
& \tilde{f}=-\theta^{\prime}(o)-\frac{U_{y}^{\prime}(o)}{R}=f^{p}+\frac{\omega^{p}}{R} \tag{35b}\\
& \vec{g}^{p}=U_{x}^{\prime}(o)+\frac{U_{z}(o)}{R}=g^{p}+\frac{w^{p}}{R} \tag{35c}
\end{align*}
$$

For the evaluation of the element stiffness matrix corresponding to the transformed nodal displacements, the transformation between the member displacement vectors of Eqs. (34a) and the member displacement considering the effect of curvature is expressed as

$$
\begin{equation*}
\mathrm{U}_{\xi}=\mathbf{T}_{1} \ddot{\mathrm{U}}_{5}, \zeta=p, q \tag{36}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathrm{U}_{\mathrm{p}}^{\mathrm{T}}=\left\{u^{p}, v^{p}, w^{p}, \omega_{1}^{p}, \omega_{2}^{p}, \omega_{3}^{p}, f^{p}, g^{p}\right\} \tag{37a}\\
& \tilde{\mathrm{U}}_{\mathrm{p}}^{\mathrm{T}}=\left\{u^{p}, u^{p}, w^{p}, \omega_{1}^{p}, \tilde{\omega}_{2}^{p}, \omega_{3}^{p}, \tilde{f}^{p}, \tilde{g}^{p}\right\} \tag{37b}\\
& \mathbf{U}_{q}^{\mathrm{T}}=\left\{u^{q}, v^{q}, u^{q}, \omega_{1}^{q}, \omega_{2}^{q}, \omega_{5}^{q}, f^{q}, g^{q}\right\} \tag{37c}\\
& \tilde{\mathbf{U}}_{q}^{\mathrm{T}}=\left\{u^{q}, v^{q}, w^{q}, \omega_{1}^{q}, \tilde{\omega}_{2}^{q}, \omega_{3}^{q}, \tilde{f}^{q}, \vec{g}^{q}\right\} \tag{37~d}
\end{align*}
$$

and

$$
\mathbf{T}_{1}=\left[\begin{array}{ccccccccc}
1 & \cdot \tag{38}\\
\cdot & 1 & \cdot \\
\cdot & \cdot & 1 & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & 1 & \cdot & \cdot & \cdot & \cdot & \cdot \\
-1 / R & \cdot & \cdot & \cdot & 1 & 1 & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & 1 & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & 1 / R & 1 & \cdot \\
\cdot & \cdot & -1 / R & \cdot & \cdot & \cdot & \cdot & \cdot & 1
\end{array}\right]
$$

Based on Eq. (36), equilibrium equation (33) is transformed to

$$
\begin{equation*}
\left(\tilde{\mathbf{K}}_{e}-\omega^{2} \hat{\mathbf{M}}_{e}\right) \tilde{\mathbf{U}}_{\mathrm{e}}=\tilde{\mathbf{F}}_{\mathrm{e}} \tag{39}
\end{equation*}
$$

where

$$
\begin{align*}
& \widetilde{\mathrm{U}}_{\mathrm{e}}=\left\langle\begin{array}{c}
u^{p}, v^{q}, w^{t}, \omega_{1}^{p}, \bar{\omega}_{2}^{q}, \omega_{3}^{g}, \tilde{f}^{p}, \widetilde{g}^{g} \\
u^{q}, v^{q}, w^{q}, \omega_{1}^{q}, \widetilde{\omega}_{2}^{q}, \omega_{3}^{q}, \tilde{f}^{q}, \tilde{g}^{q}
\end{array}\right\rangle \tag{40a}\\
& \widetilde{\mathrm{F}}_{\mathrm{e}}=\left\langle\begin{array}{l}
F_{1}^{p}, F_{2}^{q}, F_{3}^{q}, M_{1}^{p}, \breve{M}_{3}^{q}, M_{3}^{q}, \widetilde{M}_{\phi,}^{p}, \widetilde{F}_{m}^{p} \\
F_{1}^{q}, F_{2}^{q}, F_{3}^{q}, M_{i}^{q}, \widetilde{M}_{2}^{q}, M_{3}^{q}, \widetilde{M}_{p}^{q}, \widetilde{F}_{m}^{q}
\end{array}\right\rangle \tag{40b}
\end{align*}
$$

Matrices and vectors in Eq. (39), respectively, are evaluated as

$$
\begin{gather*}
\widetilde{\mathbf{K}}_{\mathrm{e}}=\mathbf{T}^{\mathrm{T}} \mathbf{K}_{e} \mathbf{T}, \tilde{\mathbf{M}}_{\mathrm{e}}=\mathbf{T}^{\mathrm{T}} \mathbf{M}_{e} \mathbf{T} \\
\widetilde{\mathbf{U}}_{\mathrm{e}}=\mathbf{T}^{\mathrm{T}} \mathbf{U}_{\mathrm{e}}, \tilde{\mathbf{F}}_{\boldsymbol{e}}=\mathrm{T}^{\mathrm{T}} \mathbf{F}_{e} \tag{41a-d}
\end{gather*}
$$

where

$$
\mathbf{T}=\left[\begin{array}{cc}
\mathbf{T}_{1} & \cdot \tag{42}\\
\cdot & \mathbf{T}_{1}
\end{array}\right]
$$

Then the global system of matrix equilibrium equation for the free vibration and elastic analysis of non- symmetric thin-walled curved beam may be obtained using the direct stiffness method.

4. Numerical Examples

In this Section, the free vibration and elastic analysis of curved beam with mono-symmetric and non-symmetric thin-walled cross sections are performed and compared with the solutions obtained from a single reference line (the line of centroid) formulation presented by Kim at al.(2002), solutions by other researchers and ABAQUS's shell elements. Also in subsequent examples, the curved beam is modeled by 20 Hermitian curved beam elements.

4.1 Curved beams with mono-symmetric cross sections

First the simply supported curved beam with mono-symmetric cross section for the x_{3} axis which the beam length l is 200 cm and the subtended angle θ_{0} is 90°, as shown in Fig. 4 is considered. It is well known that the in-plane and out-of-plane behavior of this curved beam is decoupled because the section is mono-symmetric in the plane of beam curvature.

The lowest ten natural frequencies by this study are presented and compared with the solutions based on the centroid formulation which all seven displacements are defined at the centroid in Table 1. And the lateral displacement U_{y} and
the twisting angle θ at the shear center of midspan of curved beam subjected to torsional moment $M_{1}=10000 \mathrm{Ncm}$ acting at mid-span by this study are compared with the solutions by the centroid formulation in Table 2. It can be found

Table 1 Natural frequency of simply supported curved beam with x_{3} mono-symmetric section, (rad. $/ \mathrm{sec}$)

Mode	This study	C-formulation
1	1.6579	1.6579
2	33.049	33.049
3	37.792	37.792
4	40.767	40.767
5	44.559	44.559
6	55.998	55.998
7	59.412	59.412
8	84.894	84.894
9	94.375	94.375
10	116.51	116.51

Table 2 Lateral displacement and twisting angle of simply supported curved beam with x_{3} mono-symmetric section, (cm, rad.)

Mode	This study	C-formulation
U_{y}	-1.8911	-1.8911
θ	0.057387	0.057387

(a) Geometry of a curved beam

(b) Mono-symmetric cross section for x_{3} axis

$$
\begin{gathered}
E=2 \times 10^{7} \mathrm{~N} / \mathrm{cm}^{2}, G=7692308 . \mathrm{N} / \mathrm{cm}^{2}, \\
\rho=0.077009 \mathrm{~N} / \mathrm{cm}^{2}, A=12.5 \mathrm{~cm}^{2}, J=1.04167 \mathrm{~cm}^{4}, \\
e_{2}=0 \mathrm{~cm}, e_{3}=8.61538 \mathrm{~cm},^{2}, I_{2}=133.33333 \mathrm{~cm}^{4}, \\
I_{3}=67.70833 \mathrm{~cm}^{4}, I_{222}=-100 \mathrm{~cm}^{5}, \\
I_{233}=-41.66667 \mathrm{~cm}^{5}, I_{p}=641.02564 \mathrm{~cm}^{6}, \\
I_{\phi 23}=641.02564 \mathrm{~cm}^{6}, I_{\phi Q 2}=-486.93294 \mathrm{~cm}^{7} \\
\text { (c) Material and sectional properties }
\end{gathered}
$$

Fig. 4 Simply supported curved beam with monosymmetric cross section for x_{3} axis
from Tables 1 and 2 that the natural frequencies and the displacements by this study coincide exactly with the solutions based on the centroid formulation.

Table 3 Natural frequency of simply supported curved beam with x_{2} mono-symmetric section, ($\mathrm{rad} . / \mathrm{sec}$)

Mode	This study	C-formulation
1	3.9294	3.9294
2	27.940	27.940
3	73.536	73.536
4	87.308	87.308
5	91.445	91.445
6	138.77	138.77
7	148.30	148.30
8	158.23	158.23
9	219.67	219.67
10	225.27	225.27

Table 4 Lateral, vertical displacements and twisting angle of simply supported curved beam with x_{2} mono-symmetric section, (cm, rad.)

Mode	This study	C-formulation
$U{ }_{\prime}$	-1.8329	-1.8329
U_{z}	-0.11859	-0.11859
θ	0.11398	0.11398

(a) Mono-symmetric cross section for x_{2} axis
$E=2 \times 10^{7} \mathrm{~N} / \mathrm{cm}^{2}, G=7692308 . \mathrm{N} / \mathrm{cm}^{2}$,
$\rho=0.077009 \mathrm{~N} / \mathrm{cm}^{3}, A=4.5 \mathrm{~cm}^{2}, J=0.375 \mathrm{~cm}^{4}$
$e_{2}=-1.15033 \mathrm{~cm}, e_{3}=0 \mathrm{~cm}, I_{2}=17.70833 \mathrm{~cm}^{4}$,
$I_{3}=1.77778 \mathrm{~cm}^{4}, I_{223}=4.62963 \mathrm{~cm}^{5}, I_{333}=1.23457 \mathrm{~cm}^{5}$, $I_{\phi}=7.84314 \mathrm{~cm}^{6}, I_{\varphi 23}=-7.84314 \mathrm{~cm}^{6}$
(b) Material and section properties

Fig. 5 Simply supported curved beam with monosymmetric cross section for x_{2} axis

Next, Fig. 5 shows the mono-symmetric cross section for x_{z} axis and its material and sectional properties of simply supported curved beam, in which the subtended angle and the beam length are 90° and 100 cm , respectively. In this case, the vibrational and clastic behavior of curved beam is spatially coupled because of the mono-symmetric cross section for x_{2} axis. In Tables 3 and 4, the spatially coupled natural frequencies and the displacements at the shear center of loading point of beam subjected to $M_{1}=10000 \mathrm{Ncm}$ acting at mid-span are given and compared. The cxcellent agreement between results based on two formulations is evident.

4.2 Curved beams with non-symmetric cross section

In this example, the non-symmetric curved beams with clamped free and clamped-clamped boundary conditions at the both ends are considered. Figure 6 shows the configuration of nonsymmetric cross section and the material and sectional properties. First, the lowest ten spatially coupled natural frequencics for cantilevered and clamped curved beams for subtended angle 10°

(a) Non-symmetric cross section
$E=294300 \mathrm{~N} / \mathrm{cm}^{2}, G=112815 \mathrm{~N} / \mathrm{cm}^{2}$, $\rho=0.077009 \mathrm{~N} / \mathrm{cm}^{3}, A=7 \mathrm{~cm}^{7}, J=0.58333 \mathrm{~cm}^{4}$,
$e_{2}=1.44846 \mathrm{~cm}, e_{3}=-2.04461 \mathrm{~cm}, I_{2}=67.04762 \mathrm{~cm}^{4}$,
$I_{3}=8.42857 \mathrm{~cm}^{4}, I_{23}=9.14286 \mathrm{~cm}^{4}, I_{2 z 2}=52.24490 \mathrm{~cm}^{5}$,
$I_{223}=-20.02721 \mathrm{~cm}^{5}, I_{223}=-17.41497 \mathrm{~cm}^{5}$, $I_{333}=-13.38776 \mathrm{~cm}^{5}, I_{\phi}=42.48664 \mathrm{~cm}^{6}$
$I_{422}=24.48 .383 \mathrm{~cm}^{6}, I_{\phi 23-}-42.48064 \mathrm{~cm}^{4}$,
$I_{\phi 33}=-10.53165 \mathrm{~cm}^{6}, I_{\phi \phi 2}=117.44909 \mathrm{~cm}^{7}, l=200 \mathrm{~cm}$
(b) Material and section properties

Fig. 6 Cantilevered and clamped curved beams with non-symmetric cross section

Table 5 Natural frequency of cantılevered curved beam with non-symmetric section, ($\mathrm{rad} / \mathrm{sec})^{2}$

	θ_{0}	Vibration mode									
		1	2	3	4	5	6	7	8	9	10
10	This study	00290	02686	05963	15252	51373	77437	17386	20622	27159	52343
	Kim et al (2002)	00290	02686	05963	15252	51373	77437	17386	20622	27159	52343
	ABAQUS	00299	02670	05887	15265	50520	77433	16925	20575	26645	52892
90	This study	00062	02061	02901	20272	52138	73645	17.473	32844	37949	47720
	Kım et al (2002)	00062	02061	02901	20272	52138	73645	17473	32844	37949	47720
	ABAQUS	00060	02043	02779	21714	50293	71815	17079	32233	36624	43574

Table 6 Natural frequency of clamped curved beam with non-symmetric section, $(\mathrm{rad} / \mathrm{sec})^{2}$

	θ_{0}	Vibration mode									
		1	2	3	4	5	6	7	8	9	10
10	This study	09488	44120	63262	17731	18778	21295	49633	59534	99774	11958
	$\begin{gathered} \text { K1m et al } \\ (2002) \end{gathered}$	09488	44120	63262	17731	18778	21295	49633	59534	99774	11958
	ABAQUS	09679	43543	64045	16946	18565	21369	50231	58585	10044	10501
90	This study	07223	39916	13570	31829	35223	41852	71047	80658	13820	14888
	$\begin{gathered} \text { Kim et al } \\ (2002) \end{gathered}$	07223	39916	13570	31829	35223	41852	71047	80658	13820	14888
	ABAQUS	07020	39088	13388	30838	34855	37792	69831	78659	11515	14053

Table 7 Lateral, vertical displacements and twisting angle of clamped curved beam with non -symmetric section, (cm, rad)

Mode	This study	C-formulation
U_{y}	-14185	-14185
U_{z}	012054	012054
θ	016893	016893

and 90° with keeping the total length of beam constant by this study are presented in Tables 5 and 6, respectively For comparison, the previous solutions based on the centroid formulation (Kım at al, 2002) and the results obtained from 300 nıne-noded shell elements (S9R5) of ABAQUS which is the commercial finte element analysis program are given From Tables 5 and 6, it can be observed that the centroid-shear center formulation proposed by this study for the vibration analysis of curved beam with non- symmetric cross section is accomplished Also results by this study are in a good agreement with those by

ABAQUS's shell elements Additionally the lateral U_{y}, vertical U_{z} displacements and the twisting angle θ at the shear center of mid-span for clamped curved beam subjected to a torsional moment 1000 Ncm at the mid-span are presented together with the results based on the centrond formulation in Table 7, where exact agreement is observed for the spatially coupled elastic analysis of curved beam with non-symmetric cross section

4.3 Curved heam with L-shaped cross section

We concern the free vibration and elastic analysis of the L -shaped curved beam as shown in Fig 7 The purpose of this example is to show the usefulness of the proposed curved beam theory with non-symmetric section neglecting warping deformation and to verify how it predicts well the behavior of structure by comparing the present solutions with those by ABAQUS's shell elements and the previous researches The curved beam is the clamped at the both ends and subjected to

(a) Non-symmetric L-shaped cross section
$E=20684.28 \mathrm{kN} / \mathrm{cm}^{2}, G=7955.49 \mathrm{kN} / \mathrm{cm}^{2}$,
$\rho=0.077009 \mathrm{~N} / \mathrm{cm}^{3}, A=24.1935 \mathrm{~cm}^{2}$,
$J=13.00723 \mathrm{~cm}^{4}, e_{2}=-4.23333 \mathrm{~cm}$,
$e_{3}=1.05833 \mathrm{~cm}, I_{2}=81.29520 \mathrm{~cm}^{4}, I_{3}=433.57440 \mathrm{~cm}^{4}$,
$I_{23}=108.39360 \mathrm{~cm}^{4}, I_{222}=-229.43312 \mathrm{~cm}^{5}$,
$I_{223}=-229.43312 \mathrm{~cm}^{5}, R=914.4 \mathrm{~cm}, l=609.6 \mathrm{~cm}$
(b) Material and section properties

Fig, 7 Clamped curved girder with non-symmetric L-shaped section
out-of-plane lateral force 4.45 kN (1000 lb) acting at the mid-span. In Table 8, the lowest ten spatially coupled natural frequencies by this study using Eqs. (25) and (26) are reported together with those by previous research using Eqs. (27) and (29), which several sectional properties may be needed additionally for analysis and with those obtained from 240 shell elements of ABAQUS. From Table 8, it can be found that present solutions coincide exactly with those by previous research based on the centroid formulation and for comparing with results by ABAQUS, excellent agreement is observed with less than 2.2% as maximum of difference. It should be noted that the present curved beam theory with non-symmetric cross section which the warping function is zero at the shear center eliminates the sectional properties of structures for the dynamic analysis of curved structures.

Next, the lateral displacement U_{y} at the corner of the L shaped cross section along the curved beam subjected to out-of-plane lateral force is evaluated and plotted in Fig. 8. By considering the symmetry, 10 curved beam elements are used. For comparison, the results using Eq. (27) and 8 HMC2 curved beam elements by Gendy and Saleeb (1992) based on the centroid formulation and the solutions using 24 quadrilateral shell elements developed by Saleeb et al. (1990) are

Table 8 Natural frequency of clamped curved beam with L-shaped section, ($\mathrm{rad} . / \mathrm{sec})^{2}$

Mode	This study	C-formulation	ABAQUS
1	5.6246	5.6246	5.5925
2	6.0305	6.0305	6.1635
3	10.792	10.792	11.001
4	17.427	17.427	17.224
5	19.116	19.116	19.461
6	23.800	23.800	23.917
7	28.498	28.498	28.332
8	30.329	30.329	30.585
9	34.996	34.996	34.712
10	36.862	36.862	36.129

Fig. 8 Lateral displacement at the shear center of [-shaped girder
presented. Investigation of Fig. 8 reveais that present solutions using Eq. (25) are in a good agreement with those obtained from HMC 2 elements and shell elements.

4.4 Curved box girder with non-symmetric cross section

In our final example, the non symmetric curved box girder as shown in Fig. 9 is considered. The girder is simply supported at the two ends and is subjected to an cocentric lateral force 89 N (201b) at the exterior web of mid-span. Because the material properties of plexiglass are time dependent, a series of preliminary tension and bending tests were performed on specimens cut

Fig. 9 Simply supported non-symmetric curved box girder

Fig. 10 Vertical displacement along the external web of a curved box girder
from the same sheet as the model sections. As a result of test, the material properties are taken as $E=275.97 \mathrm{kN} / \mathrm{cm}^{2}(400 \mathrm{ksi})$ and poisson's ratio $v=0.36$. To prevent the distortion of cross section of box girder, two end diaphragms and four intermediate diaphragms at angles of 15°, $35^{\circ}, 55^{\circ}$, and 75° from the lines of support are
installed. By considering the symmetry, one half of span is modeled by 10 elements. Out-of plane lateral displacement of the top flange at the location of the exterior web of midspan is shown in Fig. 10. For comparison, the results by the centroid formulation, 10 HMC 2 elements, experimental results and FE solutions using shell elements by Fam and Turkstra (1976) are presented. From Fig. 10, it can be found that present results are in a good agreement with the comparisons reported. Consequently the analysis neglecting the warping deformation results in an excellent fit to the behavior of curved box girders.

5. Conclusions

A centroid-shear center formulation for the spatially coupled free vibration and elastic analysis of thin-walled curved beams with nonsymmetric open and closed cross sections is proposed. This theory overcomes the drawback of previous curved beam theory based on the centroid formulation which should account for sectional properties additionally for curved beams with L - or T-shaped sections. In numerical cxamples, FE solutions using Hermitian curved beam elements by this study are compared with those obtained from the centroid formulation and the results by available references and ABAQUS's shell elements. Consequently, the following conclusions may be drawn.
(1) The vibration and elastic theories of the thin-walled curved beam neglecting the restrained warping torsion at the shear center may be easily derived from the thin-walled curved beam theory based on the centroid- shear center formulation by putting the sectional properties associated with warping to zero.
(2) For vibration and elastic analysis of curved beams with mono-symmetric and non-symmetric cross sections, the solutions by this study coincide exactly with those from the centroid formulation.
(3) For curved beam with L-shaped cross section, the natural frequencies and the displacements obtained from this curved beam elements
are in excellent agreement with those from curved beam elements including the warping and ABAQUS's shell elements Resultantly it is beheved that this study elımmates total sectional properties of structures for the dynamic and elastic analysis of curved structures

Acknowledgment

This work is a part of a research project supported by a grant (R01-2002-000-00265-0) from the Korea Sclence and Engineering Foundation and Korea Ministry of Construction \& Teansportation through Korea Bridge Design \& Engineering Research Center at Seoul National University The authors wish to express therr gratttude for the financial support

References

Chucheepsakul, S and Saet1ew, W, 2002, "Free Vibrations of Inclined Arches Using Finte Elements," Structural Engineering and Mechancs, Vol 13, pp 713~730

Cortunez, V H and Piovan, M T, 1999, "Out of Plane Vibrations of Thin-Walled Curved Beams Considering Shear Flexibilty," Structural Engineering and Mechames, Vol 8, pp 257~272

Dabrowskı, R, 1968, Curved Thin-walled Grrders (Translated from the German), Cement and Concrete Association, London

Fam, A R M and Turkstia, C, 1976, "Model Study of Horizontally Curved Box Girder," Journal of the Structural Divison (ASCE), Vol 102, pp $1097 \sim 1108$

Gendy, A S and Saleeb, A F , 1994, "Vibration Analysis of Coupled Extensional/Flexural/ Torsional Modes of Curved Beams with Arbitrary Thin-Walled Sections," Journal of Sound and Vibration, Vol 174, pp 261~274
Gendy, A S and Saleeb, A F, 1992, "On the Finte Element Analysts of the Spatial Response of Curved Beams with Arbitrary Thin-Walled Sections," Computers \& Structures, Vol 44, pp 639~652

Gjelsvik, A , 1981, The Theory of Thin Wa alled Bars John Wiley \& Sons, Inc

Gruttmann, F, Sauer, R and Wagner, W, 2000, "Theory and Numeriss of Three-Dimensional Beams with Elastoplastic Material Behav1our," Internatonal Journal for Numerical Methods in Engmeering, Vol 48, pp 1675~1702

Gruttmann, F, Sauer, R and Wagner, W, 1998, "A Geometrical Nonlinear Eccentric 3DBeam Element with Arbitrary Cross-Sections," Computer Methods in Applled Mechanics and Engineering, Vol 160, pp 383~400
Gupta, A K and Howson, W P, 1994, "Exact Natural Frequencies of Plane Structures Composed of Slender Elastic Curved Members," Journal of Sound and Vibration, Vol 175, pp $145 \sim 157$

Henns, C P, 1975, Bending and Torsional Destgn in Structural Members D C Health and Company

Howson, W P and Jemah, A K, 1999, "Exact Out-of-Plane Natural Frequencles of Curved Tımoshenko Beams," Journal of Englneering Mechanics, Vol 125, pp 19~25
$\mathrm{Hu}, \mathrm{N}, \mathrm{Hu}, \mathrm{B}$, Fukunaga, H and Sekine, H, 1999, "Two Kinds of Co-Type Eelements for Buckling Analysis of Thin-Walled Curved Beams," Computer Methods in Applied Mechances and Engmeermg, Vol 171, pp 87~108

Kang, K J and Han, J W, 1998, "Analysis of a Curved Beam Using Classical and Shear Deformable Beam Theories," KSME International Journal, Vol 12, pp 244~256
Kang, Y J and Yoo, C H, 1994, "Thin-Walled Curved Beams I Formulation of Nonlinear Equations," Journal of Engineering Mechantcs (ASCE), Vol 120, pp 2072~2101
Kawakamı, M, Sakıyama, T, Matsuda, H and Monta, C, 1995, "In-Plane and Out-of-Plane Free Vibrations of Curved Beams with Variable Sections," Journal of Sound and Vibration, Vol 187, pp 381~401
Lee, J H, 2003, "In-Plane Free Vibration Analysis of Cunved Timoshenko Beams by the Pseudospectral Method," KSME International Journal, Vol 17, pp 1156~1163

Kım, M Y, Kım, N I and Min, B C, 2002, "Analytical and Numerical Study on Spatial Free Vibration of Non-Symmetric Thun-Walled

Curved Beams," Journal of Sound and Vibration, Vol 258, pp 595~618.
Kım, M Y, Min, B C and Suh, M W, 2000a, "Spatial Stability of Non-Symmetric ThinWalled Curved Beams I. Analytical Approach," Journal of Engineering Mechanics (ASCE), Vol 126, pp 497~505
Kim, M Y, Min, B C and Suh, M W., 2000b, "Spatial Stabiltty of Non-Symmetric ThinWalled Curved Beams II . Numerical Approach," Journal of Engineerrng Mechanics (ASCE), Vol. 126, 506~514
Saleeb, A F, Chang, T Y, Graf, W and Yingyeunyoung, S, 1990, "A Hybrid/mixed Model for Nonlınear shell Analysis and its Applications to Large-Rotation Problems," International Journal for Numerical Methods in Englneering, Vol 29, pp 407~446
Plovan, M T Cortmez, V H and Rossı, R E, 2000, "Out-of-Plane Vibrations of Shear Deformable Continuous Horizontally Curved ThinWalled Beams," Journal of Sound and Vibration, Vol 237, pp $101 \sim 118$

Raveendranath, P Singh, G and Pradhan, B, 2000, "Free Vibration of Arches Using a Curved Beam Element Based on a Coupled Polynomial Displacement Field," Computers \& Structures, Vol 78, pp. 583~590

Saleeb, A F and Gendy, A S, 1991, "ShearFlexible Models for Spatial Bucking of ThinWalled Curved Beams," International Journal for Numertcal Methods in Engineering, Vol 31, pp 729~757

Timoshenko, S P and Gere, J M., 1961, Theory of Elastic Stabilty 2nd Ed, McGraw-Hıll, N Y

Tong, G and $\mathrm{Xu}, \mathrm{Q}, 2002$, "An Exact Theory for Curved Beams with Any Thin-Walled Open Sectons," Advances in Structural Engineering, Vol 5, pp 195~209

Vlasov, V Z, 1961, Thin-Walled Elaste Beams, 2nd Ed, National Science Foundation, Washington, DC
Wilson, J F and Lee, B K, 1995, "In-Plane Free Vibrations of Catenary Arches with Unsymmetric Axes," Structural Engineering and Mechanics, Vol 3, pp 511~525

Yang, Y B and Kuo, S R, 1987, "Effect of Curvature on Stability of Curved Beams," Journal of Structural Engineerng (ASCE), Vol 113, pp 1185~1202

Yang, Y B and Kuo, S R, 1986, "Static Stabillty of Curved Thin-Walled Beams," Journal of Engineering Mechants (ASCE), Vol 112, pp $821 \sim 841$

[^0]: * Corresponding Author,

 E-mail kmye@skkuackt
 TEL +82-31-290-7514, FAX +82-31-290-7548
 Professor, Department of Civil and Environmental Engineering, Sungkyunkwan Unversity, CheoncheonDong, Jangan-Ku, Suwon 440-746, Korea (Manascript Received July 13, 2004, Revised December 10, 2004)

